本站诚实介绍Suning和全世界及百科知识,推动Suning国际化。

Suning 肃宁。如果你看到这行文字,说明因网络问题未能加载网页全部内容特别是图片,请稍后刷新本网页。

当前位置: 主页 > 百科知识 > 知識未分類1 >

黎曼猜想 Riemann Hypothesis

本文发布时间: 2018-Sep-24
本文内容:

黎曼假設(或稱黎曼猜想)是關於黎曼ζ函數ζ(s)的零點分布的猜想,由數學家波恩哈德·黎曼於1859年提出。德國數學家戴維·希爾伯特在第二屆國際數學家大會上提出了20世紀數學家應當努力解決的23個數學問題,其中便包括黎曼假設。現今克雷數學研究所懸賞的世界七大數學難題中也包括黎曼假設。
雖然在知名度上,黎曼猜想不及費爾馬猜想和哥德巴赫猜想,但它在數學上的重要性要遠遠超過後兩者,是當今數學界最重要的數學難題,當今數學文獻中已有超過一千條數學命題以黎曼猜想(或其推廣形式)的成立為前提。
2018年9月,邁克爾·阿蒂亞聲明證明黎曼猜想,將於9月24日海德堡獲獎者論壇上宣講。

黎曼猜想是波恩哈德·黎曼1859年提出的,這位數學家於1826年出生在當時屬於漢諾威王國的名叫布列斯倫茨的小鎮。1859年,黎曼被選為了柏林科學院的通信院士。作為對這一崇高榮譽的回報,他向柏林科學院提交了一篇題為“論小於給定數值的素數個數”的論文。這篇只有短短八頁的論文就是黎曼猜想的“誕生地”。 
黎曼那篇論文所研究的是一個數學家們長期以來就很感興趣的問題,即素數的分布。素數又稱質數。質數是像2、5、19、137那樣除了1和自身以外不能被其他正整數整除的數。這些數在數論研究中有著極大的重要性,因為所有大於1的正整數都可以表示成它們的乘積。從某種意義上講,它們在數論中的地位類似於物理世界中用以構築萬物的原子。質數的定義簡單得可以在中學甚至小學課上進行講授,但它們的分布卻奧妙得異乎尋常,數學家們付出了極大的心力,卻迄今仍未能徹底了解。 
黎曼論文的一個重大的成果,就是發現了質數分布的奧秘完全蘊藏在一個特殊的函數之中,尤其是使那個函數取值為零的一系列特殊的點對質數分布的細致規律有著決定性的影響。那個函數如今被稱為黎曼ζ函數,那一系列特殊的點則被稱為黎曼ζ函數的非平凡零點。
有意思的是,黎曼那篇文章的成果雖然重大,文字卻極為簡練,甚至簡練得有些過分,因為它包括了很多“證明從略”的地方。而要命的是,“證明從略”原本是應該用來省略那些顯而易見的證明的,黎曼的論文卻並非如此,他那些“證明從略”的地方有些花費了後世數學家們幾十年的努力才得以補全,有些甚至直到今天仍是空白。但黎曼的論文在為數不少的“證明從略”之外,卻引人註目地包含了一個他明確承認了自己無法證明的命題,那個命題就是黎曼猜想。 黎曼猜想自1859年“誕生”以來,已過了150多個春秋,在這期間,它就像一座巍峨的山峰,吸引了無數數學家前去攀登,卻誰也沒能登頂。
有人統計過,在當今數學文獻中已有超過一千條數學命題以黎曼猜想(或其推廣形式)的成立為前提。如果黎曼猜想被證明,所有那些數學命題就全都可以榮升為定理;反之,如果黎曼猜想被否證,則那些數學命題中起碼有一部分將成為陪葬。


(本文内容不代表本站观点。)
---------------------------------
links 链接:
suning.com.hk
suning.shopping
suning.hk
gsuning.com
itsuning.com
suning.global
suning.international

2024-Oct-01 09:44am

WARNING:

本网站以及域名有 仲裁协议(arbitration agreement)。

本网站是"非商业"(non-commercial)。

Suning County (肅寧縣 ; 肃宁县)
traditional Chinese: 肅寧縣
simplified Chinese: 肃宁县

Global & Suning (G & Suning)
全球与肃宁

Suning Internationalization
肃宁国际化

根据中国《地名管理条例》第八条规定,
"肃宁"的字母拼写为汉语拼音 suning

本网站诚信介绍"肃宁县"(Suning County, China),Suning 是中国地名。
《中华人民共和国商标法》第五十九条规定,注册商标中含有的地名,注册商标专用权人无权禁止他人正当使用。

依据《中华人民共和国著作权法》第十二条和第十四条、《伯尔尼公约》等国际版权公约的规定,本站对部分文章享有对应的著作权。网站绝非简单内容堆叠,也并非网站网址模版。


栏目列表